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Abstract
The optimal state determination (or tomography) is studied for a composite
system of two qubits when measurements can be performed on one of the
qubits and interactions of the two qubits can be implemented. The goal is to
minimize the number of interactions to be implemented. The algebraic method
used in the paper leads to an extension of the concept of mutually unbiased
measurements.

PACS numbers: 03.67.−a, 03.65.Wj, 03.65.Fd

1. Introduction

An n-level quantum system is described by an n-dimensional Hilbert space H, or equivalently
by the algebra Mn(C) of the n × n complex matrices. When an orthogonal basis of H is
chosen, operators acting on H correspond to n × n matrices. A positive operator ρ of trace
1 is called state. If we choose and fix an orthonormal basis {e1, e2, . . . , en}, then a state ρ is
determined by the matrix elements ρij = 〈ei |ρ|ej 〉. Determination of ρ involves n2 − 1 real
parameters, namely, ρii (1 � i � n − 1), Re ρij and Im ρij (1 � i < j � n).

A von Neumann measurement on the system is a familyM = {P1, P2, . . . , Pd} of pairwise
orthogonal projections such that

∑
i Pi = I . When the measurement M is performed in the

state ρ, the outcome 1 � j � d appears with probability pj = Tr ρPi for each j [6, 7].
Independent measurements on several copies of our quantum system give the relative
frequencies fj for each outcome j and fj is an estimate of the probability pj . The repeated
measurement provides d − 1 degree of freedom concerning the density ρ, since

∑
j pj = 1.

The information we obtained is maximal if d = n which means that all the projections Pj are
of rank 1. ρ is determined by n2 − 1 parameters, hence at least n + 1 different measurements
are to be performed to cover all degrees of freedom. Of course, the n + 1 different
measurements are sufficient in the case when they provide ‘non-overlapping’ information.
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The literature of state tomography is very rich, there are several protocols, and the
efficiency of state reconstruction can be increased if the later measurements depend on the
outcomes of the former ones [1, 8, 10].

The composite system of two qubits is a four-level quantum system which is described
on the space C

4 ≡ C
2 ⊗ C

2. A state is described by 15 real parameters. Therefore, at least
five kinds of elementary measurements should be made to determine the state of the system.

Denote by A and B the two qubits. Then M4(C) = B(HA) ⊗ B(HB), where B(HA)

and B(HB) are isomorphic to M2(C). Assume that we can perform measurements only on
the qubit A. If the total system has the statistical operator ρAB , then we can reconstruct the
reduced density

ρ
(1)
A := Tr BρAB

after some measurements. In order to get more information, we switch on an interaction
between the two qubits. If H is the Hamiltonian, then the new state is

eiH ρAB e−iH = W1ρABW ∗
1 (1)

after the interaction. (For the sake of simplicity, the interaction is kept for a time unit.) The
new reduced density is

ρ
(2)
A := Tr BW1ρABW ∗

1 .

This procedure may be continued by using other interactions and ends with a sequence of
reduced states ρ

(1)
A , ρ

(2)
A , . . . , ρ

(k)
A . We want to determine the minimal k such that this sequence

of reduced densities determines ρAB . In other words, we want to minimize the number of
interactions between the two qubits. It turns out that the minimum number is 5.

Minimal realizations play an important role in systems theory, too [4], because they
represent the state of the system with the minimum possible number of parameters. Minimal
realizations are known to be jointly controllable and observable for most of the known system
classes. The above problem of finding the minimum number of reduced states can be regarded
as a minimal representation problem for a system that consists of a pair of coupled qubits.

If only one qubit is given for state determination, then the minimal number of
measurements is 3. There are many possibilities to choose the three measurements, or
equivalently the three bases of the two-dimensional space. It was argued in paper [13] that
a complete set of mutually unbiased bases is optimal for state determination. Following this
argument [13], we try to find five measurements in the above-described situation of two qubits
such that the information obtained should be optimal.

2. Algebraic formulation

Instead of the transformation (1) of the density matrix ρAB , we can change the subalgebra and
we have an equivalent algebraic formulation. The total system is described by the algebra
M4(C). We look for subalgebra A1,A2, . . . ,Ak such that

(i) Each Aj is algebraically isomorphic to M2(C), 1 � j � k.
(ii) The linear span of the subspaces A1,A2, . . . ,Ak is M4(C).

Given a subalgebra Aj , there is a unitary Wj such that W ∗
j AjWj = B(HA) ⊗ CIB . The

reduced density ρj ∈ Aj is the same as the reduction of WjρABW ∗
j to the first spin. Therefore,

instead of the reduction of density after the interaction, we can work with the reduced density
of ρAB in Aj . The second condition makes sure that the reduced densities in A1,A2, . . . ,Ak

determine ρAB completely.
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The traceless subspace of M4(C) has dimension 15, while the traceless subspace of Aj

has dimension 3, therefore we need k � 5 to fulfil the requirements. It will turn out that k = 5
is possible.

The algebra M2(C) is linearly spanned by the Pauli matrices:

σ0 :=
[

1 0
0 1

]
, σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.

Recall that they satisfy the multiplication rules

σiσj = δij I + i
3∑

k=1

εijkσk (1 � i, j � 3), (2)

where εijk is the Levi-Civita tensor:

εi1i2···in =



0 if ∃j, k such that ij = ik,

1 if the permutation (i1i2 · · · in) is even,

−1 if the permutation (i1i2 · · · in) is odd.

The above rules can be essentially simplified by posing the following two requirements:

(i) σj is a self-adjoint unitary (1 � j � k) and σ3 = −iσ1σ2.
(ii) σ1σ2 + σ2σ1 = 0.

When a triplet (S1, S2, S3) satisfies these condition, it will be called a Pauli triplet. For
such a triplet Tr Si = 0 and Tr SiSj = 0 for i �= j . The latter relation is interpreted
as the orthogonality of Si and Sj with respect to the Hilbert–Schmidt inner product
〈A,B〉 := Tr A∗B. Furthermore, it can be seen that the two relations above imply (2).

Given a Pauli triplet (S1, S2, S3), the linear mapping defined as

σ0 	→ I, σ1 	→ S1, σ2 	→ S2, σ3 	→ −iS1S2

is an algebraic isomorphism between M2(C) and the linear span of the operators I, S1, S2 and
S3.

In the algebra M4(C), the elementary tensors σi ⊗ σj form an orthogonal basis
(0 � i, j � 3). All these operators are self-adjoint unitaries and can be chosen to be
Si’s.

Proposition 1. There are five subalgebras of B(HA) ⊗ B(HB) such that each of them is
isomorphic to M2(C) and the reduced states determine an arbitrary state ρAB of the two
qubits A and B. Moreover, the Pauli triplets of four subalgebras (of the 5) are pairwise
orthogonal.

Proof. First we take the following Pauli triplets consisting of elementary tensors:

{σ0 ⊗ σ1,−σ1 ⊗ σ3, σ1 ⊗ σ2}

=







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,




0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0


 ,




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0





 ,

{σ3 ⊗ σ1, σ1 ⊗ σ1, σ2 ⊗ σ0}

=







0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 ,




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,




0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0





 ,
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{σ1 ⊗ σ0, σ2 ⊗ σ2, σ3 ⊗ σ2}

=







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,




0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0


 ,




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0





 ,

{σ0 ⊗ σ2, σ2 ⊗ σ3, σ2 ⊗ σ1}

=







0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 ,




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


 ,




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0





 .

Together with the identity, each triplet linearly spans a subalgebra Aj (1 � j � 4). It is
important to observe that all the matrices have a vanishing diagonal; moreover the matrices
are pairwise orthogonal; therefore they are linearly independent. An orthogonal Pauli triplet
does not exist, since the orthogonal complement of the subalgebras Aj (1 � j � 4) is a
commutative algebra.

If we find another Pauli triplet (S1, S2, S3) such that the diagonals are linearly independent,
then we have a fifth algebra A5 such that {Ak : 1 � k � 5} spans linearly M4(C). Indeed, if
A is any matrix, then we can find T ∈ A5 such that A − T has 0 diagonal and this is in the
linear hull of {Aj : 1 � j � 4}. It follows that the reduced densities in {Aj : 1 � j � 5}
determines ρAB uniquely.

Here is an example of the above-described triplet:

1

2




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


 ,

1

2




1 i i −1
−i −1 −1 i
−i −1 1 −i
−1 −i i −1


 ,

1

2




−1 i 1 i
−i 1 i 1
1 −i 1 i
−i 1 −i −1


 .

These matrices are not elementary tensors (but they are Hadamard matrices [11] up to a
constant multiple and were found by means of an exhaustive search algorithm on a computer
for curiosity). If we do not insists on a very particular triplet, then we can get one by a random
selection [3]. �

If we only want to find linearly independent Pauli triplets, we can make random selection
successfully with large probability. The triplets

(Wi(σ1 ⊗ σ0)W
∗
i ,Wi(σ2 ⊗ σ0)W

∗
i ,Wi(σ3 ⊗ σ0)W

∗
i )

are linearly independent if the unitaries W1, . . . ,W5 are chosen independently and randomly
(according to the Haar measure on the unitary group). Our simulation written in the Maple
package can be seen in [3].

Proposition 2. If all the matrices of the Pauli triplet generating the subalgebras Aj are of the
form ±σk ⊗ σl (0 � k, l � 3), then we need at least six triplets to span M4(C).

Proof. Assume that a Pauli triplet (T1, T2, T3) in M4(C) is such that every element is of the
form ±σi ⊗ σj (0 � i, j � 3).
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If T1 = ±σi ⊗ σj and T2 = ±σk ⊗ σl , then

±iT3 = −
∑
m,n

(εikmεjlnσm ⊗ σn)

+ i

(
δik

∑
n

(εjlnσ0 ⊗ σn) + δjl

∑
m

(εikmσm ⊗ σ0)

)
+ δikδjlσ0 ⊗ σ0.

Since T3 is self-adjoint but iσi ⊗σj is not, it follows that exactly one of the relations i = k and
j = l must hold. At least one of the operators Ti should be of the form σ0 ⊗ σj or σj ⊗ σ0.

We have three operators in the form σ0 ⊗ σj and three in the form σj ⊗ σ0 (1 � j � 3).
If we have five Pauli triplets, then at least one should contain two of the above tensor products
(up to a sign). One can see that σ0 ⊗ σj and σi ⊗ σ0 cannot be in a triplet; therefore a triplet
contains two operators in the form σ0 ⊗ σj or two operators like σj ⊗ σ0. In both cases, the
third operator has similar form. Hence one of the operators σ0 ⊗ σj and σj ⊗ σ0 appears in
two triplets and in this case five triplets cannot span the whole space.

Six subalgebras described in the proposition can be given by the following Pauli triplets:

{σ1 ⊗ σ1, σ1 ⊗ σ2, σ0 ⊗ σ3},
{σ2 ⊗ σ2, σ2 ⊗ σ3, σ0 ⊗ σ1},
{σ3 ⊗ σ3, σ3 ⊗ σ1, σ0 ⊗ σ2},
{σ2 ⊗ σ2, σ3 ⊗ σ2, σ1 ⊗ σ0},
{σ3 ⊗ σ3, σ1 ⊗ σ3, σ2 ⊗ σ0},
{σ1 ⊗ σ1, σ2 ⊗ σ1, σ3 ⊗ σ0}.

(3)

Together with I each triplet linearly spans a subalgebra Aj (1 � j � 6) and the six subalgebras
linearly span the whole M2(C) ⊗ M2(C). �

The orthogonality of the Pauli triplets shows analogy with the mutually unbiased bases.
This is discussed in the next section.

3. Generalizations

Mutually unbiased bases (or measurements) are interesting from many point of view [2, 5, 13]
and the maximal number of such bases is not completely known [12]. The above-discussed
setting of state determination is somewhat similar. In this setting we may look for essentially
orthogonal non-commutative subalgebras while unbiased elementary measurements are given
by essentially orthogonal maximal Abelian subalgebras, see proposition 2.2 of [9]. The next
statement is an analogue of Parthasarathy’s proposition.

Proposition 3. Let A1 and A2 be subalgebras of Mn(C) and assume that they are isomorphic
to Mk(C). Then the following conditions are equivalent:

(i) If P ∈ A1 and Q ∈ A2 are minimal projections, then Tr PQ = n/k2.
(ii) The subspaces A1 � CI and A2 � CI are orthogonal in Mn(C).

Proof. It follows from the conditions that n = mk and Tr P = Tr Q = m for the minimal
projections. Therefore, condition (i) is equivalent to Tr(I − kP )(I − kQ) = 0 which means
that (I − kP ) ⊥ (I − kQ). Since the subspaces in (ii) are linearly spanned by these operators,
the proposition follows. �
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Now we generalize Proposition 2 for n qubits.

Proposition 4. If all the matrices of the Pauli triplet generating the subalgebras Aj of M2n (C)

are of the form ±σk(1) ⊗ · · · ⊗ σk(n) (0 � k(i) � 3, 1 � i � n), then we need more than
(22n − 1)/3 triplets to span M2n (C).

Proof. First note that a matrix ±σk(1) ⊗ · · · ⊗ σk(n) has only real elements or only imaginary
elements. Among the three matrices of a Pauli triplet (T1, T2, T3), there is one imaginary or
there are three imaginary matrices. Let N be the number of triplets with one imaginary matrix
and M be the number of triplets with three imaginary ones. If the N + M triplets with identity
linearly span the self-adjoint subspace, then 3(N + M) + 1 � 22n. Assume that

N + M = 22n − 1

3
. (4)

Since the dimension of the subspace of self-adjoint matrices with imaginary elements is
(22n − 2n)/2, we must have

N + 3M = 22n − 2n

2
. (5)

One can see that equations (4) and (5) do not have integer solution. �

We call a family M1,M2, . . . ,Md of subalgebras mutually unbiased if the conditions in
Proposition 3 hold for any pair. The maximal number of mutually unbiased subalgebras is not
known to us even in the simplest case when the large algebra is M4(C) and the subalgebras
are isomorphic to M2(C).

4. Discussion and conclusions

The optimal state tomography has been studied for a composite system of two qubits when
measurements can be performed on one of the qubits and interactions of the two qubits can be
implemented. Equivalently, we found physically realizable minimal set of reduced densities
determined by Pauli triplets. The transformation described by (1) is realized by a properly
designed measurement apparatus (see the experimental devices in [10]).

The construction of five Pauli triplets of 4 × 4 matrices from the tensor products of Pauli
matrices contains heuristic steps as far as the orthogonal part is concerned. In our construction
four triplets are orthogonal and the fifth is only linearly independent. It is not known to us if
five orthogonal Pauli triplets exist. (The number of pairwise orthogonal Pauli triplets can be
asked for more qubits.)

The orthogonality is motivated by the work of Wootters and Field [13]. Their work
leads naturally to the concept of unbiased subalgebras. One can expect that the argument of
[13] extends to our situation and the unbiased subalgebras provide more information than the
simply linearly independent ones during state determination. This subject will be investigated
in a forthcoming paper.
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